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Abstract. Quantum corrections to the properties of a homogeneous interacting Bose gas at zero temper-
ature can be calculated as a low-density expansion in powers of

p
ρa3, where ρ is the number density

and a is the S-wave scattering length. We calculate the ground state energy density to second order inp
ρa3. The coefficient of the ρa3 correction has a logarithmic term that was calculated in 1959. We present

the first calculation of the constant under the logarithm. The constant depends not only on a, but also
on an extra parameter that describes the low energy 3 → 3 scattering of the bosons. In the case of alkali
atoms, we argue that the second order quantum correction is dominated by the logarithmic term, where
the argument of the logarithm is ρa`2V, and `V is the length scale set by the van der Waals potential.

PACS. 03.75.Fi Phase coherent atomic ensemble; quantum condensation phenomena –
05.30.Jp Boson systems

1 Introduction

The successful achievement of Bose-Einstein condensation
of atomic gases in magnetic traps [1–3] has created a re-
vival of interest in Bose gases. While a qualitative de-
scription of the condensation can be obtained using mean
field methods [4], a more quantitative treatment requires
including corrections from quantum fluctuations around
the mean-field. The relative magnitude of these correc-
tions grows as the square root of the number density of
the atoms. They will therefore become more important as
higher condensate densities are achieved.

In order to develop a deeper understanding of the
quantum fluctuations, it is worthwhile to go back to
the simpler problem of a homogeneous gas of interacting
bosons at zero temperature. This problem was studied in-
tensively in the 1950’s [5,6]. The properties of the system
can be calculated as an expansion in powers of

√
ρa3,

where ρ is the number density of atoms and a is their
S-wave scattering length. For example, the expansion for
the energy density has the form

E(ρ) =
2π~2aρ2

m

{
1 +

128
15
√
π

√
ρa3

+

[
8(4π − 3

√
3)

3
ln(ρa3) + C

]
ρa3 + . . .

}
. (1)

The coefficient of
√
ρa3 was first obtained by Lee and

Yang for a hard sphere gas [5]. The ρa3 correction is the
a e-mail: Agustin.Nieto@cern.ch

first term in the expansion that is sensitive to atomic pa-
rameters other than the scattering length. The coefficient
of ln(ρ) in the ρa3 correction was calculated by Wu, by
Hugenholtz and Pines, and by Sawada in 1959 [6].

In this paper, we present the first calculation of the
constant C under the logarithm in (1). We express the
constant in terms of a coupling constant g3 that is defined
in terms of the low-energy behavior of the amplitude for
the 3 → 3 scattering of atoms in the vacuum. The scat-
tering length a and the coupling constant g3 are the only
atomic physics parameters that are needed to calculate
the energy density to second order in the quantum cor-
rections. Since g3 is difficult to measure experimentally or
calculate theoretically, it must be treated as a phenomeno-
logical parameter. The dependence on this undetermined
parameter creates a large uncertainty in the second order
quantum correction, except in cases where the correction
is dominated by the logarithmic term. We argue that this
will typically be the case for alkali atoms, provided we
take the argument of the logarithm to be ρa`2V, where `V
is the length scale set by the van der Waals potential. In
this case our result reduces to

E(ρ) =
2π~2aρ2

m

{
1 +

128
15
√
π

√
ρa3

+
8(4π − 3

√
3)

3
ln
(
ρa`2V

)
ρa3 + . . .

}
. (2)

If the logarithm is large compared to 1, this should give an
accurate estimate of the second order quantum corrections
to the energy density.
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We begin in Section 2 by formulating the problem of
calculating the energy density as a quantum field theory
problem. In Section 3, we set up a perturbative frame-
work and use it to calculate the energy density to second
order in the quantum corrections. In Section 4, we calcu-
late the second order quantum correction to the T -matrix
element for the 3→ 3 scattering of atoms in the vacuum.
We define the coupling constant g3 and show that the
renormalization of g3 is necessary to remove a logarith-
mic ultraviolet divergence from the T -matrix element. In
Section 5, we complete the calculation of the energy den-
sity by including the contribution from g3 and its renor-
malization. We then discuss the case of alkali atoms, and
argue that the dependence on g3 can be eliminated in fa-
vor of a logarithmic dependence on the length scale set by
the van der Waals interaction. The two-loop Feynman dia-
grams that contribute to the energy density are calculated
in the Appendix.

2 Field theory formulation

We are interested in computing the ground state energy
density E of a homogeneous Bose gas as a function of its
density ρ. Our starting point is a local quantum field the-
ory that describes atoms with momenta much lower than
the inverse of the range of the interatomic potential, which
is several Å in the case of alkali atoms. At such low en-
ergies, the interactions appear pointlike on the scale of
the de Broglie wavelengths of the atoms. The many-body
quantum mechanics of the atoms can therefore be formu-
lated in terms of a quantum field theory whose hamilto-
nian density is a local function of the field:

H =
~2

2m
∇ψ† ·∇ψ +

1
4
g(ψ†ψ)2 +

1
36
g3(ψ†ψ)3 + · · · (3)

For simplicity, we have assumed that the atoms have only
one spin state so that they can be represented by a single
complex field ψ(x, t). The (ψ†ψ)2 term represents 2 → 2
scattering through an S-wave interaction with scattering
length a given by

g =
8π~2a

m
· (4)

This coupling constant contains all the information about
atomic interactions that is required to calculate the first
order quantum corrections to the properties of a suffi-
ciently cold and dilute Bose gas. We follow the effective-
field-theory philosophy [7] of including in the hamiltonian
all possible local terms that are consistent with the sym-
metries, which include Galilean invariance and the phase
symmetry ψ → eiαψ. The term (ψ†ψ)3 in (3) allows
3→ 3 scattering through a pointlike interaction. The . . . ’s
in (3) include all possible terms that are higher order in
the derivatives or in the number of fields. In principle,
the coefficients of these terms can be calculated from the
n-body potentials that describe interatomic interactions.
In the absence of such calculations, they can be taken as

phenomenological parameters. The effective-field-theory
philosophy is based on the assumption that there is a
systematic expansion in powers of the momentum. The
relative importance of the interactions terms in (3) at a
low momentum scale p is then given by the dimension-
less combination of the coupling constant and p, which is
mgp and mg3p

4 for the (ψ†ψ)2 term and the (ψ†ψ)3 term,
respectively. If p is sufficiently small, the effects of the g3

term will be much smaller than those of the g term. Terms
with more derivatives or with higher powers of ψ give ef-
fects that are suppressed by even more powers of p. Of the
infinitely many terms in (3), there are only a finite num-
ber that contribute at any given order in p. In the case of
the energy density, the appropriate momentum scales are
ρ1/3 and (ρa)1/2, so the momentum expansion becomes
an expansion in powers of the density. We will find that
the scattering length g and the coupling constant g3 are
the only atomic physics parameters that contribute to the
energy density through third order in ρ [8].

At a given order in p, only a finite number of terms
contribute. By tuning the coefficients of these terms, one
can describe n → n scattering of atoms in the vacuum
with whatever accuracy is desired.

The phase symmetry ψ → eiαψ of the hamiltonian im-
plies the conservation of the number of atoms. The num-
ber density operator is N = ψ†ψ. A homogeneous Bose
gas can be described by a field theory with hamiltonian
density H − µN , where µ is the chemical potential. The
energy density E(µ) and the number density ρ(µ) in the
ground state of this field theory are

E(µ) = 〈H〉µ, (5)
ρ(µ) = 〈N〉µ, (6)

where 〈· · · 〉µ denotes the expectation value in the ground
state. By eliminating µ from the two equations (5, 6), we
obtain E as a function of ρ. It is simpler in perturbative
calculations to first calculate the free energy density F(µ)
of the ground state:

F(µ) ≡ 〈H− µN〉µ. (7)

After inverting (6) to obtain µ as a function of ρ, one can
obtain the energy density from

E = F + µρ. (8)

The partition function for the field theory with hamil-
tonian density H − µN can be expressed as a functional
integral:

Z =
∫
Dψ†Dψ exp {iS[ψ]} , (9)

where the action S[ψ] is given by

S[ψ] =
∫

dt
∫

d3x

{
ψ†
(

i∂t +
∇2

2m
+ µ

)
ψ

−1
4
g(ψ†ψ)2 − 1

36
g3(ψ†ψ)3 − . . .

}
. (10)
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We have set ~ = 1 in the action. Dimensional analysis
can be used to reinsert the factors of ~ at the end of the
calculation. The . . . ’s in (10) represents all possible terms
with higher powers of ψ or more factors of ∇. They also
include counterterms that are needed to cancel ultraviolet
divergences associated with the parameters µ, g, and g3.
The free energy density F(µ) is related to the partition
function by

Z = exp {−iV TF(µ)} , (11)

where V T is the spacetime volume. The ground state ex-
pectation value of an operator 〈O〉 can be expressed as a
functional integral:

〈O〉µ =
1
Z

∫
Dψ†DψO exp{iS[ψ]}. (12)

By differentiating the logarithm of both (9, 11) with re-
spect to µ and using (12), we obtain the relation

ρ(µ) = −dF
dµ

(µ). (13)

Differentiating (8) with respect to ρ and using (13), we
obtain

dE
dρ

(ρ) = µ(ρ). (14)

The simplest way to calculate the energy density is to first
calculate F(µ), use (13) to get ρ(µ), invert to get µ(ρ), and
then integrate (14) to get E(ρ).

It is convenient to parameterize the quantum field
ψ(r, t) in terms of two real-valued quantum fields ξ and
η that describe quantum fluctuations around an arbitrary
constant background v:

ψ(r, t) = v +
ξ(r, t) + iη(r, t)√

2
· (15)

After inserting the field parameterization (15) into the
action (10), it can be expanded in powers of the quantum
fields ξ and η. By separating the action into a free part and
an interaction part, we can express the thermodynamic
functions as diagrammatic expansions. The free energy
density F is the sum of all connected vacuum diagrams,
which are Feynman diagrams with no external legs. This
sum is independent of the arbitrary background v. It is
convenient to define the thermodynamic potentialΩ(µ, v),
which is the sum of all one-particle-irreducible vacuum
diagrams. The thermodynamic potential, which depends
on v, contains the information required to determine all of
the thermodynamic functions. The free energy F(µ) can
be obtained by evaluating Ω(µ, v) at a particular value of
v given by the tadpole condition

v(µ) = 〈ψ〉µ. (16)

For this value of v, those diagrams that can be discon-
nected by cutting a single line vanish. Thus the sum of

connected vacuum diagram reduces to the sum of one-
particle-irreducible vacuum diagrams and we have

F(µ) = Ω(µ, v(µ)). (17)

Using (15), the tadpole condition (16) reduces to 〈ξ〉µ =
〈η〉µ = 0. The phase of the field ψ can be chosen so that
〈η〉µ is automatically 0. The condition 〈ξ〉µ = 0 can be
conveniently expressed in terms of the thermodynamic po-
tential itself:

∂Ω

∂v
(µ, v(µ)) = 0. (18)

Differentiating both sides of (17) with respect to µ and
using (18), we obtain

dF
dµ

(µ) =
∂Ω

∂µ
(µ, v(µ)). (19)

Comparing with (13), we find that the number density can
be expressed as

ρ(µ) = −∂Ω
∂µ

(µ, v(µ)). (20)

3 Ground state energy density

In this section, we calculate the ground state energy for
a homogeneous Bose gas to second order in the quan-
tum corrections. We first set up a perturbative framework
for carrying out calculations in the presence of a nonzero
chemical potential. We use the framework to calculate the
energy density to second order in the quantum correc-
tions. We then carry out the renormalizations of µ and g
that are necessary to remove power ultraviolet divergences
from the energy density.

3.1 Perturbative framework

We can describe a Bose gas with nonzero density ρ by
the action (10) with an appropriately chosen value of the
chemical potential. For simplicity, we set g3 = 0 and omit
all terms in (10) that are higher order in ψ or ∇. We
ignore for the moment the counterterms associated with
renormalization, so the parameters µ and g should be re-
garded as bare parameters. Inserting the field parameter-
ization (15) into the action and expanding in powers of ξ
and η, the action becomes

S[ψ] =
∫

dt
∫

d3x

{
µv2 − 1

4
gv4 +

vX√
2m

ξ

+
1
2

(
ηξ̇ − ξη̇

)
+

1
4m

ξ
(
∇2 − 2mgv2 +X

)
ξ

+
1

4m
η
(
∇2 +X

)
η

− gv√
8
ξ
(
ξ2 + η2

)
− g

16
(
ξ2 + η2

)2}
, (21)
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where ḟ ≡ ∂
∂tf and

X = 2m
(
µ− 1

2
gv2

)
. (22)

To organize the quantum corrections into a loop expan-
sion, we separate the terms in the action (21) that depend
on ξ and η into a free part and an interaction part:

S[ψ] = S[v] + Sfree[ξ, η] + Sint[v, ξ, η]. (23)

The free part of the action consists of the terms quadratic
in ξ and η:

Sfree[ξ, η] =
∫

dt
∫

d3x

{
1
2

(
ηξ̇ − ξη̇

)
+

1
4m

ξ(∇2 − 2mgv2 +X)ξ +
1

4m
η(∇2 +X)η

}
. (24)

The Fourier transform of the propagator for the fields ξ
and η is a 2× 2 matrix:

D(ω, k, v) =
i

ω2 − ε2(k, v) + iε

×
(

(k2 −X)/2m −iω
iω (k2 + 2mgv2 −X)/2m

)
,

(25)

where k is the wavevector, ω is the frequency, and

ε2(k, v) =
1

4m2
(k2 + 2mgv2 −X)(k2 −X). (26)

The diagonal elements of the propagator matrix (25) are
represented by solid lines for ξ and dashed lines for η, as
illustrated in Figures 1a and 1b. The off-diagonal elements
are represented by a line that is half solid and half dashed,
as in Figure 1c. All the remaining terms in the action (21)
are treated as interactions:

Sint[v, ξ, η] =
∫

dt
∫

d3x

{
vX√
2m

ξ

− gv√
8
ξ
(
ξ2 + η2

)
− g

16
(
ξ2 + η2

)2}
. (27)

The term proportional to ξ is represented by a dot at
which a solid line terminates as illustrated in Figure 1d.
The 3 and 4-point couplings are represented by points
that connect three and four lines, respectively, as in
Figures 1e–1i.

It is possible to diagonalize the propagator matrix (25)
by applying a Bogoliubov transformation to the fields ξ
and η. However, such a transformation makes the inter-
action terms in the action significantly more complicated
and increases the number of diagrams that contribute to
most quantities. For explicit calculations, it is more eco-
nomical to minimize the number of diagrams. We there-
fore prefer to use a propagator matrix with off-diagonal
elements. This perturbative framework was recently used
by Haugset, Haugerud, and Ravndal [9] to reproduce the√
ρa3 correction in the expression (1) for the energy den-

sity.

(a)

(b)

(c)

(d)

(e) (f)

(g) (h) (i)

Fig. 1. Propagators and interaction vertices for the real-valued
fields ξ and η.

3.2 Free energy density

If the n-loop contribution to the thermodynamic potential
Ω is denoted by Ωn(µ, v), the loop expansion for the free
energy density (17) is

F(µ) = Ω0(µ, v) +Ω1(µ, v) +Ω2(µ, v) + · · · , (28)

where v is the condensate, which satisfies (18):

∂Ω0

∂v
(µ, v) +

∂Ω1

∂v
(µ, v) + · · · = 0. (29)

The loop expansion (28) does not coincide with the ex-
pansion in the order of quantum corrections because of its
dependence on v. To obtain the quantum expansion, we
must expand the condensate v around its classical value
v0, which satisfies

∂Ω0

∂v
(µ, v0) = 0. (30)

By expanding (29) in powers of v − v0, and solving for v,
we obtain the quantum expansion for the condensate:

v(µ) = v0(µ) + v1(µ) + v2(µ) + · · · , (31)
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where vn is the n-th order quantum correction. For exam-
ple, the first-order quantum correction is

v1(µ) = −∂Ω1

∂v
(µ, v0)

/
∂2Ω0

∂v2
(µ, v0) . (32)

Inserting (31) into (28) and expanding in powers of v1,
v2, . . . , we obtain the quantum expansion for the free
energy. Keeping only terms through second order, we have

F(µ) = Ω0(µ, v0) +Ω1(µ, v0)

+
(
Ω2(µ, v0) + v1

∂Ω1

∂v
(µ, v0) +

1
2
v2

1

∂2Ω0

∂v2
(µ, v0)

)
.

(33)

The mean-field contribution to Ω(µ, v) is given by the
terms in (21) that are independent of ξ and η:

Ω0(µ, v) = −µv2 +
1
4
gv4. (34)

One solution to (30) is v0 = 0, but it is a local maximum
of Ω0 and therefore represents an unstable configuration.
The stable solution is

v2
0 = 2µ/g. (35)

The tree-level contribution to F(µ) given in (33) is

Ω0(µ, v0) = −µ
2

g
· (36)

The dispersion relation (26) simplifies significantly at the
point v = v0, because X = 0 at that point. It reduces to
the Bogoliubov dispersion relation:

ε(k) ≡ ε(k, v0) =
k
√
k2 + Λ2

2m
, (37)

where Λ2 = 4mµ. The tadpole interaction in (27) also
vanishes when v = v0.

Using the free part of the action (24), we can obtain
the one-loop contribution to Ω(µ, v):

Ω1(µ, v) =
i
2

∫
d3k

(2π)3

∫
dω
2π

ln detD(ω, k, v), (38)

where D(ω, k, v) is given in (25). By integrating over ω,
we obtain

Ω1(µ, v) =
1
2

∫
d3k

(2π)3
ε(k, v), (39)

where ε(k, v) is given by (26). The one-loop contribution
to the free energy is

Ω1(µ, v0) =
1

4m
I0,−1(4mµ), (40)

where I0,−1 is a function of Λ2 = 4mµ defined by the
integral

Im,n(Λ2) =
∫

d3p

(2π)3

(p2)m

[2mε(p)]n
. (41)

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Two-loop vacuum diagrams that contribute to the ther-
modynamical potential.

Differentiating the expression (39) with respect to v and
evaluating at v = v0, we obtain

∂Ω1

∂v
(µ, v0) =

gv0

4
(3I1,1 + I−1,−1). (42)

The first order quantum correction to the condensate,
which is given by (32) is

v1 = − gv0

16µ
(3I1,1 + I−1,−1). (43)

The two-loop contribution to the thermodynamic po-
tential is obtained from the vacuum diagrams shown in
Figure 2. The contributions from the individual diagrams
are given in Appendix A.5. The sum of the diagrams gives

Ω2(µ, v0) =
mgµ

8
J

+
g

64
[
3I2
−1,−1 + 2I−1,−1I1,1 + 3I2

1,1

]
, (44)

where

J = 6J0,0,1 − J−1,−1,1 − 3J1,1,1 − 2J−1,0,0. (45)

The integrals Jl,m,n are functions of Λ2 = 4mµ defined by

Jl,m,n(Λ2) =∫
d3p

(2π)3

∫
d3q

(2π)3

[
p2/2mε(p)

]l[
q2/2mε(q)

]m[
r2/2mε(r)

]n
2m[ε(p) + ε(q) + ε(r)]

,

(46)

where r = |p + q|.
Inserting (36, 40, 42, 43), and (44) into (33), we ob-

tain the complete expression for the free energy density to
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second order in the quantum corrections:

F(µ) = −µ
2

g
+

1
4m

I0,−1(4mµ)

+
mgµ

8
J +

g

32
[
I2
−1,−1 − 2I−1,−1I1,1 − 3I2

1,1

]
.

(47)

The free energy (47) depends on µ through the explicit
factors of µ and through the momentum scale of the inte-
grals which is Λ2 = 4mµ. We have made the argument of
the integral explicit for the I0,−1 term in (47).

3.3 Energy density

To calculate the energy density, we use (13) to get ρ(µ),
invert that relation to get µ(ρ), and integrate using (14) to
get E(ρ). Differentiating (47) and using (13), the number
density is

ρ(µ) =
2µ
g
− 1

2
I1,1(4mµ)− mg

8
[J + 4mµJ ′

+ (I−1,−1 − I1,1)I0,1 + (I−1,−1 + 3I1,1)I2,3], (48)

where J ′ = dJ/dΛ2 and all the integrals are functions of
Λ2 = 4mµ. We have made the argument of the integral
explicit for the I1,1 term. We have used the identity (A.6)
to differentiate the integrals Im,n. Inverting (48) to get µ
as a function of ρ, we obtain

µ(ρ) =
1
2
gρ+

1
4
gI1,1(2mgρ) +

mg2

16
[J + 2mgρJ ′

+ (I−1,−1 − I1,1)I0,1 + (I−1,−1 + I1,1)I2,3], (49)

where the integrals are now functions of Λ2 = 2mgρ. Using
the identity (A.6), we can write the expression as a total
derivative:

µ(ρ) =
d
dρ

{
1
4
gρ2 +

1
4m

I0,−1(2mgρ)

+
mg2ρ

16
J +

g

32
[I2
−1,−1 − 2I−1,−1I1,1 − I2

1,1]
}
.

(50)

We can now read off the energy density using (14):

E(ρ) = E0 +
1
4
gρ2 +

1
4m

I0,−1(2mgρ)

+
mg2ρ

16
J +

g

32
[I2
−1,−1 − 2I−1,−1I1,1 − I2

1,1], (51)

where E0 is an integration constant and all the integrals
are functions of Λ2 = 2mgρ. It is convenient to choose the
integration constant E0 so that the energy of the vacuum
is zero: E(0) = 0.

3.4 Renormalization of µ and g

Our result (51) for the energy density can be generalized
to an arbitrary number of spatial dimensions D simply by
replacing the integration measure d3p/(2π)3 in (41, 46) by
dDp/(2π)D. The integrals Im,n and Jl,m,n in (51) are ul-
traviolet divergent for any positive number of dimensions
D. If we impose a momentum cutoff ΛUV, then I0,−1 di-
verges like ΛD+2

UV , while I−1,−1 and I1,1 diverge like ΛDUV.
The integrals Jl,m,n contain subintegrals that diverge like
ΛD−2

UV , and, if D > 1, they also have an overall divergence
that scales like Λ2D−2

UV . There are cancellations among
the Jl,m,n integrals that reduce the overall divergence to
Λ2D−6

UV for D > 3 and lnΛUV for D = 3.
The divergences can be removed by renormalization.

A convenient way to implement the renormalization is to
add counterterms to the action (10):

δS =
∫

dt
∫

d3x

{
δµψ†ψ − 1

4
δg(ψ†ψ)2 + · · ·

}
. (52)

In perturbative calculations, the counterterms δµ and δg
should be treated as quantum corrections. They can be
expanded according to the order in the quantum correc-
tion:

δµ = δ1µ+ δ2µ+ · · · , (53)
δg = δ1g + δ2g + · · · . (54)

To obtain the free energy after the renormalizations of µ
and g, we substitute µ→ µ+ δµ and g → g+ δg into (47)
and expand in the order of the quantum correction. The
complete expression to second order in the quantum cor-
rections is

F(µ) = −µ
2

g
+
[

1
4m

I0,−1(4mµ)− 2
µ

g
δ1µ+

µ2

g2
δ1g

]
+
[mgµ

8
J +

g

32
(I2
−1,−1 − 2I−1,−1I1,1 − 3I2

1,1)

+
1
2
I1,1δ1µ− 2

µ

g
δ2µ+

µ2

g2
δ2g −

1
g

(δ1µ)2

+2
µ

g2
δ1µδ1g −

µ2

g3
(δ1g)2

]
. (55)

By repeating each of the steps in Section 3.3 including the
effects of the counterterms, we obtain an expression for the
energy density that takes into account the renormalization
of µ and g:

E(ρ) = E0 +
1
4
gρ2 +

[
1

4m
I0,−1(2mgρ)− ρδ1µ+

ρ2

4
δ1g

]
+
[
mg2ρ

16
J +

g

32
(I2
−1,−1 − 2I−1,−1I1,1 − I2

1,1)

+
ρ

4
I1,1δ1g − ρδ2µ+

ρ2

4
δ2g

]
. (56)

The ultraviolet divergences in (56) that are independent
of ρ can be cancelled by E0. The counterterms δ1µ, δ2µ,
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δ1g, and δ2g can be determined by demanding that the
ρ-dependent power ultraviolet divergences cancel. For ex-
ample, the integral appearing in the first order quantum
correction can be written

I0,−1 =
∫

d3p

(2π)3

(
p
√
p2 + 2mgρ− p2 −mgρ+

m2g2ρ2

2p2

)
+
∫

d3p

(2π)3

(
p2 +mgρ− m2g2ρ2

2p2

)
. (57)

The first integral converges and each term in the second
integral gives a power ultraviolet divergence. The integral
of the p2 term in the second integral of (57) is indepen-
dent of ρ and can be cancelled by E(0). The remaining
divergences can be cancelled in (56) by taking

δ1µ =
g

4

∫
dDp

(2π)D
, (58)

δ1g =
g2m

2

∫
dDp

(2π)D
1
p2
· (59)

For later convenience, we have generalized the integrals
to an arbitrary number of spatial dimensions D. Simi-
larly we can determine the counterterms δ2µ and δ2g by
demanding the cancellation of ρ-dependent power ultravi-
olet divergences in the second-order quantum corrections
in (56):

δ2µ =
mg2

4

(∫
dDp

(2π)D

)(∫
dDp

(2π)D
1
p2

)
, (60)

δ2g =
m2g3

8

(∫
dDp

(2π)D
1
p2

)2

. (61)

In D = 3 dimensions, all the power ultraviolet diver-
gences can be removed by renormalizations of µ, g, and E0.
However there is still a logarithmic ultraviolet divergence
coming from the J term in (56). That divergence is the
only obstacle to completing our calculation of the energy
density to second order in the quantum corrections. The
predictive power of quantum field theory lies in the fact
that the same renormalizations must remove the ultravi-
olet divergences from all physical quantities. The renor-
malizations that remove the ultraviolet divergences from
the ground state energy density must also remove ultra-
violet divergences from the amplitudes for the low-energy
scattering of atoms in the vacuum. In the next section,
we calculate quantum corrections to the amplitudes for
scattering of atoms in the vacuum. After identifying the
renormalization that removes the logarithmic divergence
from the energy density, we will complete the calculation
of E in Section 5.

4 Scattering of atoms in the vacuum

In this section, we calculate quantum corrections to the
T -matrix elements for 2 → 2 scattering and for 3 → 3
scattering of atoms in the vacuum. We determine the
renormalizations that are necessary to remove ultraviolet
divergences from these T -matrix elements.

(b)

(a)

(c)

Fig. 3. Propagator and interaction vertices for the complex-
valued field ψ.

4.1 Perturbative framework

Atoms in the vacuum can be described by the action (10)
with the chemical potential µ set to 0. A perturbative
framework for calculating their scattering amplitudes can
be obtained by separating the action into a free part and
an interaction part as follows:

Sfree[ψ] =
∫

dt
∫

d3xψ†
(

i∂t +
∇2

2m

)
ψ, (62)

Sint[ψ] =∫
dt
∫

d3x

(
−1

4
g(ψ†ψ)2 − 1

36
g3(ψ†ψ)3 − . . .

)
. (63)

We can read off the Feynman propagator from Sfree. Its
Fourier transform is

D(ω, k) =
i

ω − k2/2m+ iε
· (64)

This propagator is represented by a solid line with an
arrow as illustrated in Figure 3a. The 4-particle and 6-
particle interactions in (63) are represented by vertices
connecting 4 lines and 6 lines, respectively, as shown in
Figure 3b and 3c. These vertices have equal number of ar-
rows entering and exiting. This reflects the conservation of
the number of atoms, which follows from the phase sym-
metry ψ → eiαψ of the action consisting of (62, 63).
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(a) (b)

(c)

Fig. 4. Diagrams for 2 → 2 scattering: the tree-level dia-
gram (a), a one-loop diagram (b), and a two-loop diagram (c).

4.2 2→ 2 scattering

Two atoms with momenta k1 and k2 can scatter into
states with momenta k′1 and k′2 that are allowed by con-
servation of energy and momentum. The probability am-
plitude for the scattering process is given by the T -matrix
element T (k1,k2; k′1,k

′
2).

The only terms in the action that contribute to 2→ 2
scattering are those that are fourth order in ψ. If the only
such term is (ψ†ψ)2, the scattering is purely S-wave. In
this case, the T -matrix element is a function of a single
variable:

T (k1,k2; k′1,k
′
2) = T (q12), (65)

where q12 = |k1 − k2|. The center-of-mass energy E is
related to q12 by E = q2

12/4m.
The T -matrix element for 2 → 2 scattering can be

expanded in the order of quantum corrections:

T (q12) = −g + T1(q12) + T2(q12) + . . . . (66)

The first term comes from the tree diagram in Figure 4a.
The first quantum correction comes from the one-loop di-
agram in Figure 4b. Using contour integration to evaluate
the energy integral, we get

T1(q12) =

mg2

2

∫
d3p

(2π)3

1
p2 − p · (k1 + k2) + k1 · k2 − iε

· (67)

The integral has a linear ultraviolet divergence, but the
divergence can be removed by renormalization of the cou-
pling constant g. Including the counterterms from the tree
diagram in Figure 4a, we get

T1(q12) =
mg2

2

×
∫

d3p

(2π)3

1
p2 − p · (k1 + k2) + k1 · k2 − iε

− δ1g.

(68)

To maintain rotational symmetry, we must shift the inte-
gration variable by p→ p + (k1 + k2)/2 before imposing
an ultraviolet cutoff |p| < ΛUV. The resulting integral can
be evaluated analytically and we obtain

T1(q12) =
mg2

4π2
ΛUV −

mg2

16π
(−q2

12 − iε)1/2 − δ1g. (69)

The counterterm δ1g, whose value was determined in (59),
precisely cancels the linear ultraviolet divergence in (69).
The final result is

T1(q12) = i
mg2

16π
q12. (70)

A particularly convenient method for regularizing ul-
traviolet divergent integrals is dimensional regularization.
The number of spatial dimensions D is taken to be a com-
plex variable. The integral is evaluated as a function of
D in a region of the complex D-plane where it converges.
This defines an analytic function of D which can be ana-
lytically continued to D = 3. After shifting the integration
variable in (67) by p → p + (k1 + k2)/2 and then inte-
grating over the angles in D dimensions, we obtain

T1(q12) =
mg2

(4π)D/2Γ
(
D
2

) ∫ ∞
0

dp
pD−1

p2 − q2
12/4− iε

· (71)

The integral converges for ReD < 2 and is given by

T1(q12) =
mg2

2
Γ (1−D/2)

(4π)D/2

(
−q2

12

4
− iε

)(D−2)/2

. (72)

Analytically continuing to D = 3, we recover the re-
sult (70).

One of the great advantages of dimensional regulariza-
tion is that integrals that contain no scale are set identi-
cally equal to 0: ∫

dDp
(2π)D

pα = 0. (73)

This formula can be derived by first integrating over an-
gles inD dimensions, and then separating the integral over
p into two pieces corresponding to p < p∗ and p > p∗.
The integral over p < p∗ can be evaluated for D large
enough that it is convergent in the infrared. The integral
over p > p∗ can be evaluated for D small enough that
it is convergent in the ultraviolet. Upon analytically con-
tinuing the two integrals to D = 3, we find that they
cancel exactly. Because of the identity (73), dimensional
regularization sets pure power ultraviolet divergences to 0.
Thus the counterterms δµ and δg, which are given by the
integrals in (58–61), vanish. With dimensional regulariza-
tion, the only ultraviolet divergences that require explicit
renormalization are logarithmic divergences, which appear
as poles in D − 3. Nontrivial counterterms are therefore
needed only to cancel logarithmic ultraviolet divergences.

The quantum corrections to the scattering amplitude
from higher order diagrams, like the two-loop diagram in
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Figure 4c, form a geometric series and can be summed up
exactly. The nth term in the series is

Tn(q12) = −g
(
−i
mg

16π
q12

)n
. (74)

Summing up the geometric series, the complete 2 → 2
scattering amplitude is

T (q12) =
−g

1 + imgq12/(16π)
· (75)

The imaginary part of this T -matrix element is precisely
that required by the optical theorem.

4.3 3→ 3 scattering

Three atoms with momenta k1, k2 and k3 can scatter into
states with momenta k′1, k′2 and k′3 that are allowed by
conservation of energy and momentum. The probability
amplitude for 3 → 3 scattering processes in which all 3
atoms participate is given by the connected T -matrix el-
ement, which we denote by T (k1,k2,k3; k′1,k

′
2,k
′
3). For

simplicity, we consider only the center of momentum
frame, where k1 + k2 + k3 = 0 and we use the shorthand

T (123→ 1′2′3′) ≡ T (k1,k2,k3; k′1,k
′
2,k
′
3). (76)

The connected T -matrix element for 3 → 3 scatter-
ing can be separated into the terms that involve a single
virtual particle in the intermediate state and the remain-
der, which is called the one-particle-irreducible (1PI) part
of T :

T (123→ 1′2′3′) = T 1PI(123→ 1′2′3′)+
∑
(123)

∑
(1′2′3′)

T (q12)

× m

k1 · k2 − (k1 + k2) · k′3 + k
′2
3 − iε

T (q1′2′), (77)

where q12 = |k1 − k2| and q1′2′ = |k′1 − k′2|. The sums
are over cyclic permutations of k1, k2, and k3 and of k′1,
k′2, and k′3. The term in the sum that is given explicitly
corresponds to the 2 → 2 scattering of particles 1 and 2
to produce particle 3′ and a virtual particle. A subsequent
2 → 2 scattering of the virtual particle and particle 3
produces particles 1′ and 2′. Examples of diagrams that
contribute to the sum are the tree diagram in Figure 5a
and the one-loop diagram in Figure 5b.

The leading contributions to the 1PI T -matrix element
for 3 → 3 scattering come from one-loop diagrams like
the one in Figure 6a. After using contour integration to
integrate over the loop energy, we obtain

T 1PI
1 (123→ 1′2′3′) =

−m2g3
∑
(123)

∑
(1′2′3′)

I(123→ 1′2′3′), (78)

(b)

(a)

Fig. 5. One-particle-reducible diagrams for 3 → 3 scattering:
a tree-level diagram (a) and a one-loop diagram (b).

where

I(123→ 1′2′3′) =
∫

d3p

(2π)3

1
(p2 + p · k3 + k1 · k2 − iε)(p2 + p · k′3 + k′1 · k′2 − iε)

·

(79)

This integral is ultraviolet convergent.
The next most important quantum corrections to the

1PI T -matrix element come from two-loop diagrams, such
as those in Figure 6b, c, and d, and from the insertion of
a counterterm δ1g into the one-loop diagram in Figure 6a.
After using contour integration to integrate over the loop
energies, we obtain

T 1PI
2 (123→ 1′2′3′) =

δ1g

g
T 1PI

1 (123→ 1′2′3′)

+m2g2
∑
(123)

∑
(1′2′3′)

[T1(q12) + T1(q1′2′)] I(123→ 1′2′3′)

+m3g4
∑
(123)

∑
(1′2′3′)

∫
d3p

(2π)3

∫
d3q

(2π)3

1
p2 + q2 + r2 − 2mE − iε

×
{

2
(p2 + p · k3 + k1 · k2 − iε)(q2 + q · k′3 + k′1 · k′2 − iε)

+
1

(p2 + p · k3 + k1 · k2 − iε)(p2 + p · k′3 + k′1 · k′2 − iε)

}
,

(80)

where r = |p + q| and E = (k2
1 + k2

2 + k2
3)/2m is the total

energy. The integral over q in the last term of (80) has
a linear ultraviolet divergence. Using the expression (59)
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(b)

(a)

(c)

(d)

Fig. 6. One-particle-irreducible (1PI) diagrams for 3→ 3 scat-
tering: a one-loop diagram (a) and two-loop diagrams (b), (c),
and (d).

for the counterterm δ1g, we can see that the first term on
the right side of (80) cancels the linear divergence from
the integral over q in the last term.

After cancellation of the linear divergence, there re-
mains an overall logarithmic divergence in the integral
over p and q in (80). This is evident from scaling p→ tp
and q → tq. As t → ∞, the integrand scales like 1/t6
while the integration volume scales like t6. The divergence
is independent of the external momenta and therefore cor-
responds to a point interaction between the three parti-
cles. The divergence can be cancelled by the counterterm
δg3 associated with the (ψ†ψ)3 term in the action (10).
However, if we include that counterterm, we must also for
consistency include the contribution to T (123 → 1′2′3′)
from the coupling constant g3. Thus we must add to (80)
the contribution from the tree diagram in Figure 3c:

∆T = −(g3 + δg3). (81)

We choose to use dimensional regularization to reg-
ularize the integral in (80). The logarithmic ultraviolet
divergence then appears as a pole in D − 3. The pole in
the integral over p and q in (80) is identical to that of the
following integral, which is evaluated in the limit D → 3
in Appendix A.4:

∫
dDp

(2π)D

∫
dDq

(2π)D

{
2

(p2 + q2 + r2 + 2κ2)(p2 + κ2)(q2 + κ2)

+
1

(p2 + q2 + r2 + 2κ2)(p2 + κ2)2
− 1

2(q2 + κ2)(p2 + κ2)2

}

= −4π − 3
√

3
192π3

(
1

D − 3
− 1.13459

)
κ2(D−3). (82)

The last term in the integrand of (82) cancels the linear
divergence in the integral over q of the previous term, but
does not change the logarithmic ultraviolet divergence,
which gives the pole in D − 3. The pole term in (80) is
therefore[
T 1PI

2 (123→ 1′2′3′)
]
pole

= −3(4π − 3
√

3)
64π3(D − 3)

m3g4. (83)

The pole must be cancelled by the counterterm δg3 in (81).
One of the simplest renormalization schemes is minimal
subtraction [10]. This scheme defines a running coupling
constant g3(κ) that depends on an arbitrary renormaliza-
tion scale κ. The minimal subtraction prescription is to
choose the counterterm to be a pure pole in D− 3 multi-
plied by a power of κ:

δg3(κ) = −3(4π − 3
√

3)
64π3(D − 3)

m3g4κ2(D−3). (84)

The exponent of κ is chosen so that both sides of (84)
have the same engineering dimensions even when D 6= 3.
Without such a factor, renormalized quantities would in-
volve logarithms of dimensionful quantities. The power of
κ in (84) is determined by dimensional analysis. With ~ set
equal to 1, the terms in the action must be dimensionless.
Time has dimensions mL2 when ~ = 1, where L refers to
length. The integration measure

∫
dt
∫

dDx therefore has
dimensions mLD+2. Since ψ†ψ is a number density, ψ has
dimensions [ψ] = L−D/2. The dimensions of the coupling
constants are then [g] = LD−2/m and [g3] = L2D−2/m.
The power of κ in (84) provides the extra factor of L−2D+6

required for dimensional consistency.
Physical quantities cannot depend on the arbitrary pa-

rameter κ introduced through the counterterm (84). The
coupling constant g3(κ) must therefore depend on κ in
such a way that the combination g3 + δg3 is independent
of κ. This statement can be conveniently expressed in the
form of a renormalization group equation. Using (84), the
condition (d/dκ)(g3 +δg3) = 0 reduces in the limit D→ 3
to

κ
d
dκ
g3 =

3(4π − 3
√

3)
32π3

m3g4. (85)
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Since m and g are independent of κ, the solution to the
equation (85) is

g3(κ′) = g3(κ) +
3(4π − 3

√
3)

32π3
m3g4 ln

κ′

κ
· (86)

This equation tells us that the parameter g3 is a run-
ning coupling constant that varies logarithmically with
the renormalization scale κ. The renormalization scale κ
can be interpreted as the inverse of the spatial resolution.
As κ increases, the spatial resolution becomes finer and
part of the “pointlike” 3 → 3 scattering amplitude rep-
resented by the diagram in Figure 3c is resolved into the
successive 2 → 2 scatterings represented by the diagrams
in Figures 6c and 6d. The contributions from the two in-
dividual two-loop diagrams have opposite signs and the
net effect is that the coupling constant g3 increases as κ
increases.

The renormalized expression for T 1PI
2 (123→ 1′2′3′) is

given by the limit asD→ 3 of the sum of (80) and (81). To
take the limit, we must extract the pole in D−3 from the
integral over p and q in (80), so that it can be cancelled
by the counterterm δg3. This can be accomplished by sub-
tracting the integrand on the left side of (82) from the last
integrand in (80), and then adding to (80) the right side
of (82) multiplied by 9m3g4. The integral over p and q is
then convergent in D = 3, but depends logarithmically on
the scale κ.

We have eliminated the logarithmic ultraviolet diver-
gence from T 1PI by expressing it in terms of the renor-
malized coupling constant g3(κ) defined by dimensional
regularization and minimal subtraction. The resulting ex-
pression for T 1PI can serve as a definition of g3(κ) that
makes no reference to the regularization scheme. Some-
one who prefers a more physical definition of the coupling
constant can define g3,phys to be equal to the value of
−T 1PI(123→ 1′2′3′) at their favorite configuration of the
initial and final momenta. Any such coupling constant can
be expressed in the form

g3,phys = g3(κ) + C(κ)m3g4. (87)

Since its definition makes no reference to the renor-
malization scale κ, the physical coupling constant sat-
isfies (d/dκ)g3,phys = 0. The renormalization group
equation (85) then implies that the coefficient C(κ) in
(87) is a linear function of lnκ. It therefore vanishes for
some value κphys and we have

g3,phys = g3(κphys). (88)

Thus any physical definition of the coupling constant is
equivalent to the running coupling constant g3(κ) evalu-
ated at a particular value of the renormalization scale κ.
Thus there is little to be gained by using a more physical
definition of the coupling constant.

The integrals in T 1PI
2 +∆T are functions of the renor-

malization scale κ and the initial and final momenta. For
momentum configurations in which the squares of the mo-
menta and their inner products are all comparable in mag-
nitude, the only scales in the integrands are κ2 and mE,

where E is the total center-of-mass energy. Since the in-
tegral varies logarithmically with κ, it must also depend
logarithmically on mE. If the ratio of these two scales is
sufficiently large, the integral is dominated by the loga-
rithm. However, since the dependence of the logarithm on
κ is cancelled by g3(κ), there must be a large cancelling
contribution from the g3 term. The dominant terms in the
second order quantum correction to the T -matrix element
are therefore

T 1PI
2 +∆T ≈ −g3(κ)− 3(4π − 3

√
3)

64π3
m3g4 ln

mE

κ2
. (89)

The large logarithm can be avoided by choosing the renor-
malization scale of the running coupling constant g3(κ) to
be κ =

√
mE. Thus the most appropriate choice for the

renormalization scale κ in the 3→ 3 scattering amplitude
is the magnitude of the typical momenta of the scatter-
ing particles. This choice will avoid a large cancellation
between the two terms in (89).

5 Renormalized energy density

In this Section, we complete the calculation of the energy
density in Section 3 by using the renormalization of g3 to
remove the logarithmic ultraviolet divergences from the
second-order quantum correction. Our final result is ex-
pressed in terms of parameters g and g3(κ) that can be
defined purely in terms of the scattering of atoms. We
then discuss the case of alkali atoms, and argue that in
this case the dependence on g3 can be eliminated in favor
of a logarithmic dependence on the length scale set by the
van der Waals potential.

5.1 First-order quantum correction

To simplify the calculation of the quantum corrections,
we use dimensional regularization to regularize ultraviolet
divergences and minimal subtraction to carry out the
renormalization of the parameter g3. One of the great ad-
vantages of dimensional regularization is that it sets power
ultraviolet divergence to 0. The only ultraviolet diver-
gences that require explicit renormalization are logarith-
mic divergences, which appear as poles in D−3. Since the
ultraviolet divergences removed by the renormalization of
µ and g are power divergences, the explicit renormaliza-
tion of these parameters is unnecessary with dimensional
regularization. This can be seen from the expressions (58–
61) for the counterterms, which all vanish by the identity
(73). Thus the expression (56) for the energy density after
renormalization of µ and g collapses to (51). The integra-
tion constant E0, which is used to set E(0) = 0, is also zero
in dimensional regularization. This follows from the fact
that the only scale in the dimensionally regularized inte-
grals Im,n and J is 2mgρ. These integrals therefore vanish
when ρ = 0, since there is no momentum scale.
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From (51), the first order quantum correction to the
energy density is

E1(ρ) =
1

4m
I0,−1(2mgρ). (90)

Using the expression for the dimensionally regularized in-
tegral given in (A.12), this becomes

E1(ρ) =
1

60π2

(2mgρ)5/2

m
· (91)

Using (4) to express g in terms of the scattering length a,
we recover the classic result for the first order quantum
correction given in (1).

5.2 Second-order quantum correction

Dimensional regularization eliminates the power ultravi-
olet divergences from the second-order quantum correc-
tion in (51), but the expression still contains a logarithmic
ultraviolet divergence. The renormalization of this diver-
gence requires including the effects of the coupling con-
stant g3 and its counterterm at tree level. The term that
must be added to the free energy density can be read off
from the integrand in the action (10):

∆F(µ) =
1
36

(g3 + δg3)v0
6. (92)

Following the effect of the correction through to the energy
density, we find

∆E(ρ) =
1
36

(g3 + δg3)ρ3. (93)

With dimensional regularization, the complete second-
order quantum correction is the sum of (93) and the cor-
rection in (51):

E2(ρ) =
1
36

[g3(κ) + δg3(κ)] ρ3

+
mg2ρ

16
J +

g

32
(
I2
−1,−1 − 2I−1,−1I1,1 − I2

1,1

)
.

(94)

The values of the integrals J , I−1,−1, and I1,1 in di-
mensional regularization are given in (A.23), (A.13),
and (A.14) with Λ2 = 2mgρ. The pole in D−3 in J is can-
celled by the pole in the counterterm δg3(κ) given in (84),
but the cancellation leaves a logarithm of 2mgρ/κ2 in the
limit D → 3. Combining all the terms, our expression for
E2 is

E2(ρ) =
1
36
g3(κ)ρ3

+
4π − 3

√
3

768π3

(
ln

2mgρ
κ2

+ 0.80
)
m3g4ρ3, (95)

where g3(κ) is the running coupling constant defined by
the minimal subtraction renormalization prescription. The

expression (95) is independent of the arbitrary renormal-
ization scale κ. The renormalization group equation (85)
implies that the explicit logarithmic dependence of (95) is
cancelled by the κ-dependence of g3(κ). If κ2 differs by or-
ders of magnitude from 2mgρ, there is a large cancellation
between the logarithm in (95) and the term containing
g3(κ). Such a large cancellation can be avoided by choos-
ing the renormalization scale to be κ =

√
2mgρ. This is

the momentum scale at which the dispersion relation for
the Bogoliubov mode changes from linear to quadratic.
Our final result for the energy density to second order in
the quantum corrections is obtained by adding the correc-
tions (91) and (95) to the mean-field contribution:

E(ρ) =
1
4
gρ2 +

1
60π2

(2mg)5/2

m
ρ5/2

+
1
36

[
g3(κ) +

3(4π − 3
√

3)
64π3

×
(

ln
2mgρ
κ2

+ 0.80
)
m3g4

]
ρ3, (96)

It would be very difficult to measure the coupling con-
stant g3(κ) experimentally by studying the 3-body scat-
tering of atoms. It would also be difficult to calculate
this parameter theoretically from a microscopic descrip-
tion of the interaction between atoms. Thus g3(κ) must
be treated as a phenomenological parameter. The predic-
tive power of the result (96) for the energy density resides
in the fact that the same coupling constant g3(κ) appears
in the second order quantum corrections to other physical
quantities, such as the dispersion relation for the Bogoli-
ubov modes. All of the low-energy observables of the Bose
gas can be calculated to second order in the quantum cor-
rections in terms of two phenomenological parameters: the
S-wave scattering length a and the coupling constant g3(κ)
associated with 3→ 3 scattering.

5.3 Alkali atoms

Our final result (96) for the energy density is of limited
utility because it depends on the phenomenological pa-
rameter g3(κ). It may be possible to neglect the depen-
dence on g3 if the second quantum correction is dominated
by the logarithm. We argue that this is indeed the case for
typical alkali atoms, and that the dependence on g3 can
be eliminated in favor of a logarithmic dependence on the
length scale set by the van der Waals interaction.

The interaction between two atoms at low energy can
be described by a potential V (r) that has a repulsive core
at very short distances, an attractive region at short dis-
tances comparable to the size of the atom, and a long-
range behavior given by the van der Waals potential:

V (R)→ − α

R6
· (97)

The scattering length a is extremely sensitive to the short-
distance behavior of the potential. Small variations in the
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depth or range of the potential can easily cause a to vary
from −∞ to +∞. However, given a random distribution
in one of the short-distance parameters of the potential,
the distribution of a is concentrated in the region where
|a| is less than or comparable to the van der Waals length
defined by [11]

`V =
(mα

9.58

)1/4

. (98)

For most values of the short-distance parameters, a is com-
parable in magnitude to `V. However, a varies dramati-
cally with the short-distance parameters near the critical
values at which a new 2-body bound state appears. As a
parameter passes through its critical value, a approaches
±∞, changes discontinuously to ∓∞, and then decreases
in magnitude. The magnitude of a will be orders of magni-
tude larger than `V only if the short-distance parameter is
in a narrow range around its critical value. We summarize
this situation by saying that the natural magnitude of a is
`V, and that much larger values require fine-tuning of the
potential.

One can use the concept of natural magnitudes to es-
timate the magnitude of the coupling constants in the la-
grangian for an effective field theory. A coupling constant
with dimensions Ln/m, where L refers to length, will by
dimensional analysis have the form f`nV/m, where f is
dimensionless. The assumption of naturalness is that the
coefficient f is of order 1 except when a short-distance pa-
rameter of the potential is tuned to within a narrow range
of a critical value. Since the coupling constants g and g3

in the action (10) have dimensions L/m and L4/m, re-
spectively, the natural estimates for their magnitudes are
|g| ∼ `V/m and |g3| ∼ `4V/m, respectively.

One can improve on these naive estimates by taking
into account geometrical factors of 4π. For example, using
the relation (4) between the coupling constant and the
scattering length a, we obtain the estimate

|g|natural ∼
8π`V
m
· (99)

We argue that the magnitude of g should be comparable to
this natural estimate unless the 2-body potential is tuned
so that there is a bound state near threshold.

We next consider the coupling constant g3(κ) associ-
ated with 3→ 3 scattering. This is a running coupling con-
stant that depends on an arbitrary renormalization scale
κ. An estimate of the magnitude of this coupling constant
must include a specification of the scale κ at which the
estimate applies. Our estimates of natural values, which
involve dimensional analysis, are based on the assumption
that `V is the only important length scale. Thus the esti-
mate must apply for momentum scales κ that correspond
to the length scale `V. We will therefore assume that the
estimate of the natural value applies to g3(κ) for κ compa-
rable to 2π/`V. Making a guess for the appropriate values
of 4π, our estimate for the natural value is

|g3(κ)|natural ∼
(4π`V)4

m
for κ ∼ 2π

`V
· (100)

We will verify that this guess passes a simple consistency
check. If both g and g3 have natural values, then we
would expect their values not to change dramatically un-
der changes of the renormalization scale by a factor of 2
or 3. Using the solution (86) to the renormalization group
equation for g3(κ), we see that the change in g3 from the
evolution of κ by a factor of e is

∆g3 ∼
3(4π − 3

√
3)

32π3
m3g4. (101)

If g has the natural magnitude given in (99), the estimate
(100) is approximately equal to (101), which indicates that
our guess of the factors of 4π in (100) is at least reasonable.

We now consider an atom for which g3 has the natural
magnitude given by (100). It could be much larger if the
potentials describing 2-body and 3-body interactions are
tuned so that there is a 3-body bound state near threshold.
We cannot exclude such a possibility, but if we pick an al-
kali atom at random it is unlikely. We proceed to consider
the three cases where g is much smaller than, compara-
ble to, and much greater than the natural estimate given
in (99). If g is much smaller than |g|natural, then renor-
malization has little effect on the value of g3. The m3g4

term in the second order correction to the energy density
in (96) is negligible compared to the g3 term. In this case,
we cannot calculate the second order correction without
knowing the value of g3. Next we consider the case where
g is comparable to |g|natural. The g3 term in (96) is then
comparable in magnitude to the constant term multiply-
ing m3g4. These two terms can be neglected only if the
coherence length (2mgρ)−1/2 is orders of magnitude larger
than `V/2π. In this case, the logarithmic term dominates
and we obtain an estimate of the second order quantum
correction that is independent of the unknown constant g3:

E(ρ) ≈ 1
4
gρ2 +

1
60π2

(2mg)5/2

m
ρ5/2

+
4π − 3

√
3

768π3

(
ln
mgρ`2V

2π2

)
m3g4ρ3. (102)

Finally, we consider the case where g is much larger than
|g|natural. In this case, g3 will quickly evolve under renor-
malization to a value comparable in magnitude to (101).
Again we find that the g3 term in (96) is comparable in
importance to the constant under the logarithm. If the co-
herence length is orders of magnitude larger than the van
der Waals length, these terms are negligible compared to
the logarithmic term and the expression (96) for the free
energy density reduces again to (102). In summary, the
approximation in (102) is valid provided that g3 is not
unnaturally large compared to the estimate (100), that a
is not unnaturally small compared to `V, and also that∣∣ln(ρa`2V)

∣∣� 1. (103)

Under these conditions, we can eliminate the dependence
on g3 in favor of a logarithmic dependence on `V. Using
(4) to express (102) in terms of the scattering length a, we
obtain the expression for the energy density given in (2).
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6 Conclusion

We have calculated the second order quantum correction
to the energy density of a homogeneous Bose gas. This
is the first correction that depends on an atomic physics
parameter other than the S-wave scattering length a. We
identify that parameter as a coupling constant g3 that
specifies the point-like contribution to the 3 → 3 scat-
tering of atoms in the vacuum. The result for the energy
density in terms of g and the running coupling constant
g3(κ) is given in (96). In the case of alkali atoms, we ar-
gued that the dependence on g3 can be eliminated in terms
of a logarithmic dependence on the length scale `V set by
the van der Waals interaction. The resulting expression
for the energy density is given in (2).

Thus far the only alkali atoms for which Bose-Einstein
condensation has been successfully carried out are 87Rb,
23Na, and 7Li. Our calculations apply only to atoms with
positive scattering length, such as 87Rb and 23Na. The
scattering lengths for these atoms are 60 ± 15 Å for
87Rb [12] and 29 ± 3 Å for 23Na [13]. The parameter α
in the van der Waals potential (97) is roughly 7 keVÅ6

for Rb and 1.8 keVÅ6 for Na. The van der Waals length
`V defined in (98) is therefore about 60 Å and 30 Å, respec-
tively. In both cases, the scattering length is comparable
in magnitude to `V, so that one of the conditions for (102)
is satisfied. The condition (103) depends on the density ρ
and will be satisfied if ρ is orders of magnitude larger than
1/(a`2V).

The magnitude of the quantum corrections increases
with the number density. To see roughly how important
these corrections are in existing magnetic traps, we evalu-
ate them for the typical densities at the centers of the traps
in the earliest experiments [1,3]. For 87Rb atoms with
number density ρ = 3×1012/cm3, the correction factor in
(2) is 1 + 0.004− 0.0002. For 23Na with ρ = 3× 1014/cm3,
the quantum correction factor in the energy density is
1 + 0.01 − 0.002. In both cases, the second order quan-
tum correction is an order of magnitude larger than one
would have guessed by squaring the first-order quantum
correction. The second order correction is relatively large
because the logarithm in (2) is large, having the value −14
for 87Rb and −12 for 23Na. Thus the condition (103) for
the validity of (2) is indeed satisfied.

The estimates given above suggest that the number
densities in the Bose-Einstein condensates that have been
produced thus far are not sufficiently high for the effects
of quantum fluctuations on the energy density to be mea-
surable. Since the first quantum correction scales like

√
ρ,

the quantum corrections can be made larger by increas-
ing the number of atoms in the trap. Unfortunately, the
peak density ρ scales like N2/5 [4], so N must be increased

∫
dω1

2π

∫
dω2

2π
1

[ω2
1 − ε2(p) + iε][ω2

2 − ε2(q) + iε][(ω1 + ω2)2 − ε2(r) + iε]
=

1
4ε(p)ε(q)ε(r) [ε(p) + ε(q) + ε(r)]

, (A.2)∫
dω1

2π

∫
dω2

2π
ω1ω2

[ω2
1 − ε2(p) + iε][ω2

2 − ε2(q) + iε][(ω1 + ω2)2 − ε2(r) + iε]
=

1
4ε(r) [ε(p) + ε(q) + ε(r)]

· (A.3)

by orders of magnitude before the effects of quantum fluc-
tuations on the energy density will be measurable. There
are however other observables that may be more sensitive
to the effects of quantum fluctuations. These effects may
also be more important at temperatures near the phase
transition for Bose-Einstein condensation. We hope that
our explicit calculation of second-order quantum correc-
tions for the energy density of a homogeneous Bose gas
will stimulate further work on quantifying the effects of
quantum fluctuations on experimentally measurable ob-
servables.

This work was supported in part by the U. S. Department of
Energy, Division of High Energy Physics, under Grant DE-
FG02-91-ER40690.

Appendix A: Loop integrals for the energy
density

In this appendix, we evaluate the integrals that are needed
to calculate the second order quantum corrections to the
energy density. We also list the expressions for each of the
two-loop diagrams.

A.1 Energy integrals

The energy integrals can be evaluated by contour integra-
tion. The energy integral for the one-loop subdiagrams in
Figures 2a–2c are∫

dω
2π

1
ω2 − ε2(p) + iε

= − i
2ε(p)

, (A.1)

where ε(p) is the Bogoliubov dispersion relation given in
(37). The energy integrals for the two-loop diagrams in
Figures 2d–2g are

see equations (A.2, A.3) below.

A.2 One-loop momentum integrals

The one-loop and two-loop corrections to the ground state
energy density involve momentum integrals of the form

Im,n =
∫

p

p2m−n

(p2 + Λ2)n/2
, (A.4)

where we have introduced the following notation for
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the integration over a momentum in D spatial dimensions:

∫
p

≡
∫

dDp
(2π)D

· (A.5)

The integrals (A.4) satisfy the identities

d
dΛ2

Im,n = −n
2
Im+1,n+2, (A.6)

Λ2Im,n = Im−1,n−2 − Im+1,n. (A.7)

After integrating over angles, the integral is

Im,n =
1

(4π)D/2Γ (D2 )

∫ ∞
0

dp2 (p2)m+(D−n−2)/2

(p2 + Λ2)n/2
· (A.8)

If the integral is convergent, we can use integration by
parts to derive the identity

(D + 2m− n)Im,n = nIm+2,n+2. (A.9)

The integral (A.8) is ultraviolet divergent if D ≥ 2(n −
m) and infrared divergent if D ≤ n − 2m. If the integral
converges, its value is

Im,n =

1
(4π)D/2

Γ (2n−2m−D
2 )Γ (D+2m−n

2 )
Γ (n2 )Γ (D2 )

ΛD+2(m−n). (A.10)

If the integral (A.8) is ultraviolet or infrared divergent, it
can be regularized using dimensional regularization. The
regularized integral is obtained by analytically continuing
the expression (A.10) to D = 3. The result is

Im,n =
1

4π2

Γ (2n−2m−3
2 )Γ (3+2m−n

2 )
Γ (n2 )

Λ3+2(m−n). (A.11)

The one-loop integrals that appear in the ground state
energy density are I0,−1, I−1,−1, and I1,1. In 3 dimensions,
these integrals have power ultraviolet divergences. With
dimensional regularization, they are given by the finite
expressions

I0,−1 =
1

15π2
Λ5, (A.12)

I−1,−1 = − 1
6π2

Λ3, (A.13)

I1,1 =
1

3π2
Λ3. (A.14)

A.3 Two-loop momentum integrals

The two-loop correction to the ground state energy den-
sity (51) involves a linear combination of the integrals

Jl,m,n =∫
p

∫
q

(
p/
√
p2 + Λ2

)l (
q/
√
q2 + Λ2

)m (
r/
√
r2 + Λ2

)n
p
√
p2 + Λ2 + q

√
q2 + Λ2 + r

√
r2 + Λ2

,

(A.15)

where r = |p + q|. In D = 3, these integrals have quartic
and quadratic ultraviolet divergences that cancel in the
combination of integrals J given in (45). The expression
for J can be written

J =
∫

p

∫
q

1

p
√
p2 + Λ2 + q

√
q2 + Λ2 + r

√
r2 + Λ2

×
[

6p√
p2 + Λ2

− 2
√
p2 + Λ2

p

− 3pqr√
p2 + Λ2

√
q2 + Λ2

√
r2 + Λ2

−p
√
q2 + Λ2

√
r2 + Λ2

qr
√
p2 + Λ2

]
. (A.16)

This integral still has linear and logarithmic ultraviolet di-
vergences. By subtracting and adding appropriate terms
in the integrand of J , we can isolate the linear and loga-
rithmic divergences into separate terms:

J = Jlin + Jlog + Jnum. (A.17)

The term containing the linear ultraviolet divergence is

Jlin = 2
∫

p

[
2− p√

p2 + Λ2
−
√
p2 + Λ2

p

]∫
q

1
q2
·

(A.18)

The term in (A.17) containing the logarithmic ultraviolet
divergence is

Jlog =

− Λ4

∫
p

∫
q

{
2

(p2 + Λ2)(q2 + Λ2)(p2 + q2 + k2 + 2Λ2)

+
[

1
p2 + q2 + k2 + 2Λ2

− 1
2(q2 + Λ2)

]
1

(p2 + Λ2)2

}
.

(A.19)

The integral Jnum obtained by subtracting (A.18) and
(A.19) from (A.16) is convergent in D = 3 dimensions
and can be evaluated numerically. It is convenient to sym-
metrize the integrand over the six permutations of p, q,
and r in order to avoid cancellations between different
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Jnum =

Z
p

Z
q

1

6

X
(pqr)

(
1

p
p
p2 + Λ2 + q

p
q2 + Λ2 + r

√
r2 + Λ2

"
6pp

p2 +Λ2
− 2

p
p2 + Λ2

p

− 3pqrp
p2 + Λ2

p
q2 + Λ2

√
r2 +Λ2

− p
p
q2 + Λ2

√
r2 + Λ2

qr
p
p2 + Λ2

#
+

2

q2

"
2− pp

p2 + Λ2
−
p
p2 + Λ2

p

#

+
2Λ4

(p2 + q2 + r2 + 2Λ2)(p2 + Λ2)(q2 + Λ2)
+

�
1

p2 + q2 + r2 + 2Λ2
− 1

2(q2 + Λ2)

�
Λ4

(p2 +Λ2)2

)
. (A.20)

regions of momentum space. The resulting expression is

see equation (A.20) above.

Since Λ is the only scale in the integrand, dimensional
analysis implies that the integral is proportional to Λ4.
Evaluating the coefficient of Λ4 numerically, we obtain

Jnum = 2.10× 10−3Λ4. (A.21)

Because of the severe cancellations between the various
terms in the integral, we were only able to calculate it to
3 significant figures.

We evaluate the ultraviolet divergent integrals Jlin in
(A.18) and Jlog in (A.19) using dimensional regularization.
The integral over q in (A.18) vanishes since there is no
scale in the integrand, and therefore Jlin = 0. The integral
(A.19) is evaluated in Appendix A.4 in the limit D → 3,
and the result is

Jlog =
4π − 3

√
3

192π3

(
1

D − 3
− 1.13459

)
Λ4+2(D−3).

(A.22)

Adding (A.21) and (A.22), we obtain the complete result
for J using dimensional regularization:

J =
4π − 3

√
3

192π3

(
1

D − 3
+ 0.57

)
Λ4+2(D−3). (A.23)

A.4 Evaluation of Jlog

The term (A.19), which contains the logarithmic ultravi-
olet divergence in the integral J , can be written

Jlog = −Λ4(2K1 +K2), (A.24)

where K1 and K2 are the following integrals:

K1 =∫
p

∫
q

1
(p2 + q2 + r2 + 2Λ2)(p2 + Λ2)(q2 + Λ2)

, (A.25)

K2 =∫
p

∫
q

[
1

p2 + q2 + r2 + 2Λ2
− 1

2(q2 + Λ2)

]
1

(p2 + Λ2)2
,

(A.26)

where r = |p + q|.
We first consider the integral K1. Setting r2 = p2 +

q2 +2p ·q and then introducing Feynman parameters, the
integral (A.25) becomes

K1 =
∫ 1

0

dx
∫ 1−x

0

dy

×
∫

p

∫
q

1
[(1− y)p2 + (1− x)q2 + zp · q + Λ2]3

, (A.27)

where z = 1−x− y. Dimensional regularization allows us
to shift and rescale the momentum variables. We can elim-
inate the dot product from the denominator by making the
shift p → p − z

2(1−y)q. After rescaling p by (1 − y)−1/2

and q by
(

(1−x)(1−y)−z2/4
1−y

)−1/2

, the integral factors into
a Feynman parameter integral and an integral over the
momenta:

K1 =
∫ 1

0

dx
∫ 1−x

0

dy[(1− x)(1− y)− z2/4]−D/2

×
∫

p

∫
q

1
(p2 + q2 + Λ2)3

· (A.28)

The integral over the momenta can be evaluated analyti-
cally:∫

p

∫
q

1
(p2 + q2 + Λ2)3

=
Γ (3−D)
2(4π)D

Λ2(D−3). (A.29)

The gamma function has a pole at D = 3. To obtain K1

in the limit D → 3, we need to expand the Feynman
parameter integral in powers of D − 3:

K1 =
Γ (3−D)
2(4π)D

Λ2(D−3)

×
{∫ 1

0

dx
∫ 1−x

0

dy
[
(1− x)(1− y)− z2

4

]−3/2

−D − 3
2

∫ 1

0

dx
∫ 1−x

0

dy
[
(1− x)(1− y)− z2

4

]−3/2

× ln
[
(1− x)(1− y)− z2

4

]}
, (A.30)

where z = 1 − x − y. The first integral in (A.30) can be
computed analytically and has the value 4π/3. The second
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integral has to be computed numerically and has the value
−9.43698. Extracting the pole in D − 3 from the gamma
function in (A.30) and keeping all terms that survive in
the limit D→ 3, we obtain

K1 = − 1
96π2

Λ2(D−3)

[
1

D − 3
+ 1.12646 + γ − ln(4π)

]
,

(A.31)

where γ is Euler’s constant.
We next consider the integral K2 in (A.26). By intro-

ducing a Feynman parameter, it can be written

K2 =
∫ 1

0

dx(1− x)
∫

p

∫
q

(
1

[p2 + xq2 + xp · q + Λ2]3

− 1
[(1− x)p2 + xq2 + Λ2]3

)
. (A.32)

By shifting and rescaling the momentum variables, we can
reduce the integral over the momenta to (A.29). In the
first term of (A.32), we shift p→ p− x

2 q and then rescale

q by
(
x(4−x)

4

)−1/2

. In the second term, we rescale p by

(1− x)−1/2 and q by x−1/2. After integrating over p and
q, we obtain

K2 =
Γ (3−D)
2(4π)D

Λ2(D−3)

×
∫ 1

0

dx(1− x)x−D/2
[
(1− x/4)−D/2 − (1− x)−D/2

]
.

(A.33)

To obtain K2 in the limit D → 3, we need to expand the
integrand in (A.33) in powers of D − 3:

K2 =
Γ (3−D)
2(4π)D

Λ2(D−3)

{∫ 1

0

dx
(

8(1− x)√
x3(4− x)3

− 1√
x3(1− x)

)
−D − 3

2

∫ 1

0

dx
(

8(1− x)√
x3(4− x)3

ln
x(4− x)

4

− 1√
x3(1− x)

ln[x(1− x)]
)}

. (A.34)

The integrals can be evaluated analytically. Extracting the
pole in D − 3 from the gamma function and keeping all
terms that survive in the limit D→ 3, we obtain

K2 =
√

3
64π3

Λ2(D−3)

×
[

1
D − 3

+
4π

3
√

3
− 1

2
ln

3
4
− 1 + γ − ln(4π)

]
.

(A.35)

A.5 Two-loop diagrams for the free energy density

The two-loop vacuum diagrams that contribute to
−iΩ2(µ, v0) are shown in Figure 2. These diagrams can
be reduced to momentum integrals by integrating over the
loop energies using the identities in Appendix A.1. Ex-
pressed in terms of the integrals Im,n and Jl,m,n defined
in (A.4) and (A.15), the contributions of the individual
diagrams to Ω2(µ, v0) are

Ω
(a)
2 =

3
64
gI2

1,1 (A.36)

Ω
(b)
2 =

1
32
gI−1,−1I1,1 (A.37)

Ω
(c)
2 =

3
64
gI2
−1,−1 (A.38)

Ω
(d)
2 = − 3

16
mg2v2

0J1,1,1 (A.39)

Ω
(e)
2 =

3
8
mg2v2

0J0,0,1 (A.40)

Ω
(f)
2 = − 1

16
mg2v2

0J−1,−1,1 (A.41)

Ω
(g)
2 = −1

8
mg2v2

0J−1,0,0. (A.42)

Adding up these diagrams, we get (44).
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